
(Refer Slide Time: 29:11).

 I think we have mentioned or we have discussed all those particular bits along with that, we

may have some other bits also. So, these are the bits basically affected by some ALU operation.

So, programmer cannot set or reset those particular bits ok. These flag bits will be always

affected by the result of an ALU, but along with that we are having some flags also. So, one of

the flag bits is your interrupt enable and disable. So, in that particular case when we are going

to look for interrupt enable and disable.

So, what basically we have said, this is the processor and this is a device say CPU and say

device. So, device is giving an interrupt. So, whenever is interrupt is coming now processor,

what processor will do? It will complete the execution of the current instruction and going to

give service to the devices by indicating with another signal call, say acknowledgment signal.

Now, what will happen if whenever you are doing, if some device is going to interrupt? We

are bound to give the service to the interrupted devices, but if processor is engaged in some

important work, high priority work, just say in case of your this thing, say when we are looking

for the aircraft control. So, in the control unit then what will happen? We are monitoring the

aircraft and accordingly we have to schedule the remaining aircraft.

So, when it is doing that particular job processor need not be interrupted by any other devices,

because if it is going to give the service to that interrupted devices that during that period

something else may happen. So, in that particular case what will happen? We may have a

provision to say whether we will allow interrupt or we will disallow interrupt. So, for that we

1084

are having a flag bit called interrupt enable. So, if we set it, then it says that we are enabling

interrupt; that means, during the execution of a particular program, any devices can interrupt

the processor, if we set it to interrupt disable then what will happen?.

We are setting, we are disabling the interrupt and in that particular case what will happen if

interrupt comes, then processor is not going to give the service to the interrupted devices, it

will first complete the current program, after that only it will look for that particular interrupt

devices. So, this is the way we can control it also whether interrupt will be allowed or not, but

there is a risk, there is a problem say you have written an interrupt service routine ok and your

first instruction is a interrupt disable. We have disabled the interrupt and you have written your

program.

So, what will happen after completion of the interrupt service routine, it will come to the main

program, you have disabled the interrupt at that particular point. So, it remains disabled. So,

after that processor is not going to give service to the interrupt, because it is already disabled.

So, responsibility lies with the programmer who is going to write the interrupt service routine.

If he writes interrupt disable after completion of the interrupt service routine, we should enable

it also interrupt enable. So, this is basically I am talking about an interrupt service routine.

So, while you are going to write your program also, when you are going to develop the software

if you feel that if you think that processor should not be interrupted while executing this

particular program. So, at the beginning you can disable it, but before completion, before

coming out from this particular software you should enable the interrupt; otherwise for

remaining span the interrupt will remain as disabled. So, processor is not going to give service

to any of the devices. So, this responsibility lies with the programmer to enable it and disable

it.

So that means, this can be set and reset by a programmer, but other bits cannot be set and reset

by a programmer that will be set and reset by ALU operation. Like that similarly we are having

one particular flag bits which is the supervisor mode. So, if you are working with a UNIX

system or Linux system, you may be knowing that we are having different kind of user; one is

your root user, all of you know about it.

So, if you are having a privilege of root user you can do many more system operation, you can

do many more things, you can set or reset many more things, but if you are in, you are in the

user mode then only you can work with the processor which is relevant to you only, you cannot

1085

touch any other system parameters. So, for that also what will happen? We can have a flag bits

and that flag bit will be set to either supervisor mode or non-supervisor mode. So, for root

generally we set it as a supervisor mode.

So, when you login as a root then what will happen? You are having in the supervisor mode.

Now we can change many more system parameter, but if you login as a user then you are not

in supervisor or you are not having the supervisor mode. So, you can carry out only the work

or the privilege assigned to you only you cannot change any of the system parameters. So, such

type of flag bits are also there which will be, which can be set by the programmer. So, some

bits are set by the programmer and some bits cannot be set by the programmer. So, combination

of all those things are known as my program status word.

(Refer Slide Time: 34:58).

So, this is a simple example, just say how, what will happen when we are going to perform the

interrupt service routine, so it says that this is my user program ok. Currently the values of

program counter is 𝑁 + 1. So, what does it means; that means, we are executing this particular

instruction that is available in this particular memory location N ok. Now, at that time while

you are executing this thing, you just see that some interrupts has arrived, then what processor

will do?.

Processor will complete the execution of this instruction after it is going to give the service to

the interrupted devices; that means, it is going to execute the corresponding interrupt service

routine. So, before going to start that interrupt service routine what it needs to do. Say, basically

1086

it shows like that at that time that value of the stack pointer is T; that means, this is my stack.

So, stack pointer is pointing at that particular point. So, when it receives an interrupt what it

does? First it is going to store those particular general purpose registers.

So, we are pushing it to the control stack, after pushing this things to the control stack, then we

are pushing this particular program counter value to the stack. Now you just see that stack is

now from 𝑇 and we are putting some information. Now values of the stack pointer that top of

the stack is becoming the address 𝑇 − 𝑀. So, this 𝑇 − 𝑀 is put into the stack pointer, because

after completion of the service routine we have to pop out from this particular point 𝑇 − 𝑀 to

𝑇. So, once we put those things then what will happen. Now this is the interrupt service routine,

it started from 𝑌 and going to 𝑌 + 𝐿. So, the program counter values will be loaded with this

particular address 𝑌.

So, now, we are set. Now what will happen when we are going to fetch the next instruction,

then what will happen? We are going to fetch the instruction from this particular memory

location 𝑌. So, like that now we are going to execute the program that is available over here.

Now, once it is done, once we complete this particular interrupt service routine that return

instruction is coming, then we have to restore the value. Now what we are doing? You just see

that first this is the top of the stack, we push, we pop it now we are popping it to the 𝑌 − 𝐿, all

the registers value that we have stored we again pop it out and in accordingly it is going to

push it over here.

Now accordingly that’s these values will be reduced. Now top of the stack becomes T. Now

we are going to put this particular 𝑇 to over here. So, when I am bringing this information, you

just see now that program counter value is becoming 𝑁 + 1. Now, we are going to fetch the

instruction that is in this memory location 𝑁 + 1. So, this is the way that we are giving service

to the interrupted devices. We are storing the context current context of the processor into the

system stack execute the interrupt service routine.

After completion of the interrupt service routine restore back the processor status and start

executing the program from the next instruction. Now this is the way that we are handling the

interrupt ok. Now, I think it is clear to us, how we are handling the interrupt and how we are

going to give service to the interrupted devices by running an interrupt service routine. Now

what are the design issues that we have? So, some of the issues that I have identified over here.

1087

(Refer Slide Time: 38:38).

How do we identify the module using the interrupt? Because already I am saying that there

may be several I/O module. In every I/O module we may connect several devices. So, we are

going to work with a particular device, it will come to a particular I/O module. So, how to

identify that particular module which is receiving the interrupt, how do we deal with the

multiple interrupts. Now say this is my main program ok.

So, I am executing this particular instruction at that point 1 interrupt is coming; that means, I

am running this particular interrupt service routine. So, from here we are coming to this

particular interrupt service routine, when I am running this interrupt service routine when say

some more interrupt is coming over here say 1. So, another interrupt is coming over here.

So, now what to do, whether can I go for interrupt service routine 2, sorry interrupt service

routine 2 whether I should execute this particular interrupt, then only you should go for this

thing. So, these are the issues that we are having. So, how we are going to handle this particular

interrupt. So, this is one issue or secondly, we may complete this particular interrupt, then you

can go to this. So, basically it depends on the priorities that we are going to set with the interrupt

ok.

So, we will see these particular issues. So, these are the issues. Now how to identify the module

using a interrupt. This is the addressing scheme that already we have discussed when we

discussed about the programmed I/O and we have seen that how we are going to connect the

I/O devices, we are having two way to do it; one is your memory mapped I/O and second one

1088

is your isolated I/O. So, for all the modules we are having, an address, but if several modules

are connecting, so several addresses are there. How we will be knowing which module has

given the interrupt. So, you have to identify the appropriate module.

So, this is the issues how to identify it, but we know the addressing scheme. Through addressing

scheme we can give address to each and every I/O module

(Refer Slide Time: 40:53).

So, there are different ways to do it to write, define. Identifying the interrupt module, 1 of issue

is your define lines for its module. So, basically what will happen, say this is my processor, I

am saying that I am having an line through which I can give interrupts, so this may be your,

say I/O module 1. So, if interrupt is coming through this particular interrupt line, interrupt line

1 then I will be knowing that I have to give service to the interrupt module 1 I/O module 1.

So, similarly I can have another interrupt line where I am connecting, say I/O module 𝑀2.

Second module is connected to the interrupt line 2. So, if interrupt is coming through this

particular interrupt line 2, then we know that it is coming from this I/O module 2. So, in that

way we can resolve this issue, but how many lines you are going to provide, we don’t know

the how many devices we are going to connect. Now while you are designing the processor,

we do not know where we are going to use it, depending on the use of the processor we are

going to connect several devices.

1089

So, during design issues we cannot simply give the number of lines. We cannot freeze it,

because any number may not be sufficient enough ok. So, for that what will happen? We have

to look for a generic solution, so that that processor can be used for any situation, any number

of devices can be used. So, for that one of the method is called software poll. Here we are going

to use some software routine, CPU asks each module in turn ok. So, in that particular case what

will happen? So, very simple way I can say that this is the software poll. Now processor is

going to run a routine, software routine to identify the I/O module which has given this

particular interrupt, you just see.

After completion of the current instruction, we know that some interrupt request is there. Now

processor is going to give service to the interrupted devices. Now if you are conducting several

interrupted devices. Now how to identify which module has given this particular interrupt. So,

for that before running the device service routine, it will run another software which may be a

part of my operating system which is known as your software poll. So, in that particular case,

it says that CPU asks each module in turn ok. Now in that particular case situation may be

something like that, this is my processor ok, through this particular interrupt line we are

connecting many more devices or many more I/O module; say this is module 1, module 2,

module 3.

So, any module can give interrupt. Now when processor is going to say that, now it has got an

interrupt. Now it have to identify which module has given it. So, I am saying that in software

poll is going to run a software. So, in that particular case what will happen? Now CPU branches

to the interrupt service routine. In that particular case we are having the software, poll each I/O

module to determine which module caused the interrupt. So, first it will going to see check this

particular module ok, that service routine or say the software poll routine, whether interrupt is

coming from this particular module or not.

If it is not coming, then it will be going to check for the next module ok. If it is not coming

from it, then processor is going to check for the third module. So, this is the way it can look for

it.

1090

(Refer Slide Time: 44:47).

So, it is going to poll each and every module I/O module or each and every device to check

which one has given the interrupt ok. So, this is the way it will identify and once it will identify

that this particular module is giving the interrupt, accordingly it will place the addresses of this

particular module, and going to work with this particular module. So, now, how to do these

things. So, or doing this things we are having define a process, one it says that it can be done

by separate command line TEST I/O. So, we may have one command line or one control line

through that particular control line, it is going to give TEST I/O. So, the processor raises the

TEST I/O and puts the addresses.

So, what will happen we can have a control signal called TEST I/O and it will raise these things

and along with that, it will give the address of this particular I/O module. Then if this particular

module has generated the interrupt, then what will happen, accordingly it will respond to the

processor that; yes, it has done it. If it is not doing it then it is not going to respond say not done

it, then what will happen. This signal will go to the next module along with the appropriate

address of this particular module and this module will also behave like that. If generated the

interrupt, then it will respond to the processor. This is one way of doing it, which is known as

your separate command line called TEST I/O.

The processor raises the TEST I/O and places the address the I/O module respond positively if

said the interrupt. So, this is one way, second way is done it by addressable status register. So,

basically what will happen? Already I said that for I/O module, if I am having an I/O module

1091

then we are having called as status register ok. In last class I think I have explained it that we

are having a status register. So, here we may have 1 bit position, maybe which is known as

your interrupt bit ok.

So, when this I/O module will set this particular interrupt, then what will happen? It will set

this particular bit to 1; that means, it will indicate that interrupt has been raised by this particular

module. So, in that particular case what will happen? This processor is going to check this

particular status bits, say 1 says that one interrupt that processes has got an interrupt. Then it

will complete the execution of the current instruction and now it is going to look for the giving

service to the interrupted devices.

Now, it is going to check this particular bit if this is set, then it will be a processor will be

knowing that this module has given the interrupt and accordingly processor will set the address

of this module and going to carry out the work. If it is 0, then this is going to check the next

module and accordingly it will go this way. So, it is going from module to a module, just to

check it whether who has raised the interrupt. So, this is another way to resolve it. So, these are

the two ways we can resolve it. We can see which devices or which I/O module has raised the

interrupt and once we can identify it then what will happen? We are going to run the appropriate

service routine, interrupt service routine for that particular device.

(Refer Slide Time: 48:09).

So, this is basically say we are doing into the software levels. So, another one we are having

an hardware level and which is known as your hardware poll. It is similar to that particular

1092

polling only, software polling only, but it is done in the hardware level. So, you don’t have any

service routine. So, how we are doing it? You just see say this is the processor, now say this is

the interrupt line ok. So, through this particular interrupt line module will be connected. So,

this is the module 1, module 2 and module 3 like that ok.

Now, what will happen when processor is going to give the getting an interrupt, then it should

give the service to the processor. So, most of the processor is having one line called interrupt

acknowledgement. So, basically this is the terminology we use INT basically look for, says

that this is the line interrupt line and INTA is your interrupt acknowledgment ok. So, these are

the two lines. So now, when processor is going to service to the interrupted devices, then it will

set this particular interrupt acknowledgement to one, it says that now processor is ready to give

the service.

Now, when it will come to the first module, then what will happen? If that module has raised

the interrupt then it will capture this particular interrupt acknowledgement and accordingly it

will place it in function, maybe address of this particular device to indicate that this module 1

has raised the interrupt. If module 1 has not raised the interrupt then what will happen? It will

pass this interrupt acknowledgement to the next devices. So, now, next devices also act

accordingly. If it has raised the interrupt then it will give the indication to the processor along

with its address. If it has not devices, then it will pass the interrupt acknowledgement to M3.

So, this is you just see that we are implementing these things in the hardware. So, that’s why

you are talking about it is the hardware poll or the name given is your daisy chain, because

devices are connected in a same fashion one after another in one chain itself. So, this is the

things that we are having the interrupt acknowledgment sent down the chain. So, this is the

chain. So, it is sent on the chain, module responsible places vector on bus. This vector basically

nothing but a address of this particular devices to indicate that; yes it has done it, CPU uses

vector to identify the handle Routine.

So, depending on those particular vector what will happen? Now processor is going to identify

which service routine it needs to execute and accordingly it will set the program counter value.

So, this is one way and another way is called bus master. So, we are having a bus master. So,

basically what will happen? This is the processor, it is connected to say all the devices through

this particular system bus. So, in case of bus master what will happen? We are going to

implement one more devices called bus master. So, in that particular case what will happen,

1093

whichever devices is going to give an interrupt first of all, it is going to acquire the bus; that

means, that bus will be used by that particular devices only.

So, first of all devices or I/O module is going to acquire a bus, whichever is the I/O module is

acquiring the bus only that I/O module or that device can raise the interrupt. So, it is not unique,

only one device can raise the interrupt who has got the bus, because through bus master we are

going to get the bus actually control of the bus. So, this system bus will be having a control to

only one devices and with the help of these things we are going to identify which module is

going to give the interrupt. So, these are the ways that we are having.

(Refer Slide Time: 52:35).

Now, how to handle multiple interrupts. So, in that particular case 1 issue is like that we can

have several interrupt lines, but this is limited. So, in that particular case what will happen?

Now we have to handle this things. Now already I said that when one interrupts come, we are

giving a service to one interrupted interrupt service routine at that time another interrupt may

come. So, now, what decision you have to take. So, basically for each and every devices we

are going to give a priority and generally it says that higher priority device cannot be interrupted

by lower priority device.

So, in a bus mastering only current master can interrupt ok. This is also another issue we have,

so we are assigning a priority. So, if processor is giving a service to a devices which is having

higher priority than that lower priority interrupt will remain pending. So, in that particular case

what will happen? This is the processor. So, this is say one interrupt service routine. So,

1094

interrupt may come over here ok. We will see if this interrupt is coming from a higher priority

devices then what will happen? Then we are going for the interrupt service routine of that

higher priority devices.

If the interrupt is coming from a lower priority device than what will happen. Then we will

come, complete this particular interrupt after that only we are going to give the service to that

particular interrupt service routine. So, this is the way we are going to handle it, either

immediately you can give it if the priority is higher or otherwise we first complete the interrupt

first interrupt service routine first, then only we are going for the next interrupted devices. Now

how to issue these things, how to handle this particular interrupt.

So, if we are having multiple line then what will happen? Each line can have a priority, say this

is a higher priority line one, this is the lower priority line and this is the least priority line. So,

those devices connected to the higher priority line will be always given the preference. On the

other hand say if I am having only one line and all the devices are connected to it, then what

will happen? In that particular case that we have to give service to the higher priority device.

Now, you consider about a software poll then what will happen? We are going to write the

routine, software poll routine in such a way that first it is going to look check the status of the

higher priority devices. If it is not interrupting then we will go for the lower priority devices.

Similarly in case of your daisy chain, then higher priority devices will be electrically nearer to

the processors. So, in this particular diagram you just see that first 𝑀1 is going to get the

interrupts ah, acknowledgment if it is not doing it, then it will give the pass the interrupt

acknowledgement to the next module.

So, higher priority module will be connected first which will be electrically nearer to this

particular processor. So, in this particular connection 𝑀1 is having the highest priority, then

𝑀2, then 𝑀3. So, this is the way we can resolve it. So; that means, while connecting the devices

we have to resolve the priorities. So, this is the issues that we have while designing an interrupt

and while designing the interrupt processor then we have to integrate all those things while

designing the processor itself. So, there is one simple example I am giving, say we are talking

about the 80x86 family.

1095

(Refer Slide Time: 56:28).

So, when we are having that say 80486, 80386 processor. So, for that processor we are having

an interrupt controller. So, 8259A is an interrupt controller. So, through that interrupt controller

we can connect 8 lines, it is having 8 interrupt lines; that means, you can connect 8 devices to

it ok. Again this particular 8259A can be connected in cascade fashion also. So, if we are having

more devices then we can use these things in cascade to incorporate more devices. So, one

simple example. So, what is the sequence of events?

(Refer Slide Time: 56:59).

1096

You just see I will show the example also 8259A accepts interrupts ok. So, devices are

connected to 8259A, if except the interrupts from the devices 8259A determines the priority.

So, again that priority, determination priority is not posed to the processor itself. So, 8259A is

going to determine the priority which is having the highest priority which is having the lowest

priority like that.

Once it is getting this particular resolving that particular issue, then 8259A signals 8086

through an interrupt line. So, 8086 having an INTR line interrupt line. So, once it identify the

devices, once it find out the priority that it can be now service can be given to it, then 8259A

give the interrupt signals to 8086 then CPU acknowledges then 8086 acknowledge for it, when

it will acknowledge? after completion of the current instruction then 8259A puts the correct

vector on the data bus. Now say through 8259A we are connecting 8 different devices or even

we can connect more.

So, it will put the correct vector, appropriate vector; that means, every device is having some

unique id or say unique address. So, it will put these things, after getting that information now

CPU processes the interrupt, now what will happen when it gets the correct vector, then

processor will be knowing which interrupt service routine we have to process or we need to

execute. It is going to execute that particular interrupt service routine.

(Refer Slide Time: 58:39).

So, this is the way I am saying that we can connect more devices. Now say this is the processor.

Now currently we are talking about 80268, it is that 8259A. So, this is working as a master, it

1097

is going to give this interrupt signal. Now, say here I can connect 8 different devices from in

IR0 to IR7, but instead of connecting the devices to those particular line, we are connecting

another controller.

Now here we are connecting all the devices. So, in that particular case you just see that we can

connect 64 devices in this particular arrangement. So, 8 devices in a first ah, when interrupt is

coming from this particular interrupt controller. Basically this interrupt is related to device 0 to

device 7. Again if it is coming from this particular interrupt then what will happen. Again this

is related to some other 8 devices. So, like that we are having 64 devices.

Now, this controller is going to reserve from where it is going to get it. So, if it is going to get

it from in the IR0; that means, it is related to those particular device 0 to 7 accordingly it will

give the interrupt. When it gets the interrupt acknowledgement then it will put the, this

controller will put the appropriate vectors, it will give the appropriate vector to the processor;

that means, appropriate address of this particular device who has interrupted it. So, this is the

way we are going to connect I/O devices to the processor.

So, it can be cascaded also, so these are specifics. Now we are talking about 80x86. So, to

connect the devices in a interrupt mode we have to take help of this particular interrupt

controller. For other families for other processor we have to use the corresponding interrupt

controller. So, for every processor we are having an interrupt controller. So, this is the way we

are connecting and we are doing data transfer with the help of your interrupt driven I/O.

(Refer Slide Time: 60:33)

1098

So, with this now we coming to the end. Now you just see the some test item. So, first test item

talking about, saying that what is the major issues with programmed I/O technique for data

transfer or how can it be handled? So, this is the objective 1, because we know the problem,

what is what is the problem in programmed I/O, to handle it we are coming to interrupt driven

I/O. Question 2 explain using examples how data transfer is performed between CPU and I/O

devices using interrupt based I/O technique, how does it resolve the issues with program based

I/O. So, this is basically objective 1 and 2.

So, basically already we have explained how we are performing the I/O transfer in interrupt

driven these things and I think you know what is the difference now with respect to

programmed I/O.

(Refer Slide Time: 61:32).

Test item 3, question 3 what are the different types of interrupts, explain with example where

each type is applicable. So, basically you just see that what are the different type of interrupts

that we may have. So, the, somethings coming from I/O devices itself, something are coming

from I/O modules and all those interrupts may have different priorities. So, how we are going

to handle it ok. Question 4 if there are multiple devices working on interrupt based I/O, how

does CPU decide on their priorities.

So, basically here in 8086, maybe I have to say that priority has been given to your interrupt

handler interrupt controller, but on the other hand if it is a daisy chain method, then what will

happen, that while connecting the devices we have to resolve it. If we are using your, say

1099

software poll then while writing the software poll routine we have to resolve it. So, these are

the issues that we are having, how to handle the priorities and we have to appropriately do it.

So, with this I will wind up this particular lecture.

Thank you all.

1100

